Что такое входной поток. Смотреть страницы где упоминается термин входной поток

L () - входной поток объектов, подлежащих обнаружению - интенсивность усилий поиска  

Для описания другой важнейшей составной части любой , - входного потока заявок, - обычно задают вероятностный закон, которому удовлетворяют длительности интервалов между двумя последовательно поступающими заявками. Эти длительности обычно являются статистически независимыми и их распределение не изменяется в течение некоторого достаточно продолжительного промежутка времени. Иногда встречаются системы, в которых заявки могут поступать группами (например, посетители в кафе). Обычно предполагается, что источник, из которого поступают заявки, практически  


распределением Пуассона , поэтому описанный нами входной поток заявок (в пашем случае - автомобилей) называют пуассоновским).  

Здесь аа, с - векторы A, G, С - матрицы коэффициентов у х - векторы выходных и входных потоков объекта и - вектор переменных, обеспечивающих диапазонную зависимость выходов от входов.  

Необходимо установить значение научных знаний в технологическом развитии. Воспринимать технологию как "применение научного знания" означает воспринимать последнее как феномен, происходящий вне рамок функционирования технологии как таковой. Здесь внимание концентрируется на "входных потоках" знаний (от науки), важных для производственных процессов . Такое представление о "получаемом знании" вступает в противоречие с многочисленными доказательствами того, что "технологические усовершенствования обычно происходят рапсе их научного осмысления".  

Рассмотрим условия бесперебойного функционирования поставщиков. Они выражаются как ограничения на случайный входной поток Qkl  

Модель а, предназначена для представления в ТП структуры агрегата (узла) и имитации его работы сменой состояний жизненного цикла как функции команд и событий, поступающих на него. При этом состояния жизненного цикла представляют операции, выполняемые узлом над входным потоком и состоянием узла (занят - свободен, исправен - неисправен). Модель узла включает функции (задачи) управления преобразованием потока, проходящего через узел, - функции регуляторов, защит, блокировок.  

На схеме дано изображение трех основных входных потоков (вода, пища и топливо) и трех выходных потоков (сточные воды , твердые отходы и загрязнения воздуха), которые являются общими для всех городов. В этой модели появляются величины, измеренные в натуральных единицах, а именно отходы производства по каждому виду загрязнителей. Это обстоятельство существенно меняет привычные свойства модели межотраслевого баланса , в которой все величины выражены в стоимостной форме.  

Входные потоки Процесс Выходные потоки  

Наличие входного потока означает необходимость разгрузки транспорта, проверки количества и качества прибывшего груза. Выходной поток обусловливает необходимость погрузки транспорта, внутренний - необходимость перемещения груза внутри склада.  

Смешение потоков. Рассмотрим первоначально случай, когда в системе смешиваются потоки чистых веществ, имеющих одинаковую температуру Т. Обозначим через Nk число молей k-ro вещества, поступающего в систему в единицу времени (мольный расход). Процесс смешения необратим, производство энтропии может быть найдено как разность между энтропией выходного и входных потоков. С учетом неизменности их энтальпии получим  

Функция (р зависит, как и F в выражении (1.79), от параметров входного потока и потока, обогащенного целевым компонентом  

Поскольку р

Ошибочные значения содержат константы и литералы. В разделе входные подобные ошибки встречаются во входных потоках информации пользователя и в файлах данных. Эти ошибки являются результатом несоответствия входных данных программным спецификациям . В разделе внутренние такие ошибки могут проявляться в виде констант или литералов, входящих в состав кода, инициализирующего некоторые вычисления.  

Работа пользователя-бухгалтера при решении задач состоит в выполнении на ПЭВМ повторяющихся технологических операций (команд), реализуемых в режиме активного диалога путем набора команд на клавиатуре, или в автоматическом (программном) режиме, при котором входной поток команд заранее сформирован в специальную программу (командный файл). В режиме активного диалога решаются разные заранее не предсказуемые задачи, выдача различной справочной, аналитической и другой информации по запросу и по мере необходимости.  

Помимо изложения математических схем имитационного моделирования в этой главе сопоставляются аналитическое и имитационное моделирование СМО с позиции адекватности моделируемому объекту. В результате такого сопоставления возникает важный вывод о том, что при аналитическом моделировании СМО реальных объектов результаты моделирования никогда не соответствуют поведению объекта, так как дают значения параметров СМО в установившемся режиме. Реальные же объекты, которые моделируются в виде СМО в установившемся режиме, как правило, не находятся, так как входные потоки и сами СМО постоянно меняют свои параметры и распределения, а следовательно, СМО все время находится в переходном режиме. Лишь имитационное моделирование СМО, не ограничивающее входные потоки требованиями стационарности, однородности, отсутствием по-  

Входной поток заявок (требований на обслуживание) характеризуется определенной организацией и рядом параметров (рис 5.1.1) интенсивностью поступления заявок, т.е. числом заявок, в среднем поступивших в единицу времени, и законом распределения вероятностей моментов прихода заявок в систему.  

Синхронизирующие моменты Рис. 5.1.1. Входной поток заявок  

Рассмотрим более детально характеристики входного потока заявок и простейшие СМО. Потоком однородных событий называют временную последовательность появления заявок на обслуживание при условии, что все заявки равноправны. Существуют также потоки неоднородных событий, когда та или иная заявка обладает каким-то приоритетом.  

Таким образом, для простейших потоков и элементарных СМО можно аналитически вычислить их качественные параметры. Реальные экономические объекты , как правило, представляют сложные СМО как по структуре, так и по входным потокам и параметрам. В большинстве случаев аналитические выражения для оценки качества СМО, моделирующих реальные экономические объекты и процессы, найти не удается. Применение имитационного метода к задачам массового обслуживания позволяет находить необходимые показатели качества для экономических систем любой сложности, если удается построить алгоритмы имитации каждой части СМО.  

Работа алгоритма заключается в многократном воспроизведении случайных реализаций процесса прихода заявок и процесса их обслуживания при фиксированных условиях задачи. Меняя условия задачи, параметры входных потоков и элементов СМО, можно получить качественные параметры данной СМО при тех или иных изменениях. Качественные параметры СМО типа вышеперечисленных для простейших входных потоков и элементарных СМО оцениваются путем статистической обработки величин, являющихся качественными показателями функционирования СМО.  

Это распределение принято называть распределением Пуассона , поэтому описанный нами входной поток заявок (в нашем случае - автомобилей) называют пуассоновским. Мы не собираемся излагать здесь вывод формул (2.1) и (2.2), читатель найдет его в книге Гнеденко Б. В., Курс теории вероятностей . - М. Наука, 1969.  

В данном примере мы рассмотрели самый простой случай пуассоновский входной поток, экспоненциальное время обслуживания , одна обслуживающая установка. На самом деле, в реальности, и распределения бывают значительно сложнее, и АЗС включают в себя большее число бензоколонок. Для того чтобы упорядочить классификацию систем массового обслуживания , американский математик Д. Кен-далл предложил удобную систему обозначений, широко распространившуюся к настоящему времени. Тип системы массового обслуживания Кендалл обозначил с помощью трех символов, первый из которых описывает тип входного потока, второй - тип вероятностного описания системы обслуживания , а третий - количество обслуживающих приборов. Символом М он обозначал пуассоновское распределение входного потока (с экспоненциальным распределением интервалов между заявками), этот же символ применялся и для экспоненциального распределения продолжительности обслуживания. Таким образом, описанная и изученная в этом параграфе система массового обслуживания имеет обозначение М/М/1. Система M/G/3, например, расшифровывается как система с пуассоновским входным потоком, общей (по-английски - general) функцией распределения времени обслуживания и тремя обслуживающими устройствами. Встречаются и другие обозначения D -детерминированное распределение интервалов между поступлением заявок или длительностей обслуживания, Е - распределение Эрланга порядка п и т. д.  эффективности затрат). И для этого необходима комплексная экспертиза, которая невозможна без скрупулезного, глубокого и детального анализа внутренней структуры проекта , позволяющего прокалькулировать производимые затраты и исчислить (описать) предполагаемые выгоды. Тогда проект перестает быть "черным ящиком ", а рассматривается как экономическая система . Под экономической системой обычно понимают комплекс взаимосвязанных элементов, каждый из которых сам может рассматриваться как система.  

Однако, есть один ключевой компонент, который не учитывался в этом анализе прирост производительности. Вспомним, что производительность труда определяется , как реальная продукция, произведенная за час работы. Точно так же полный фактор производительности определяется как реальная продукция в единицу совокупности всех входных параметров. Полный фактор производительности отражает, частично, общую эффективность, с которой входные параметры преобразуются в продукцию. Это часто связывается с технологией, но также отражает и воздействие множества других факторов , подобных экономии на масштабе, любых неучтенных входных параметров, перераспределений ресурсов и так далее. Когда производительность растет, рост экономики (ВНП) может быть больше, чем рост разницы между количествами притекающими (расходы правительства и экспорт) и вытекающими (налоги и импорт), потому что большее количество продукции на единицу входного потока создает новое богатство на агрегированном уровне. Как следствие, представляется, что аргументы Годли нельзя применять напрямую.  

МГЦ-бхобящий б логистическую систему материальный поток (Входной поток)  

Из приведенных соотношений можно сделать следующий вывод для заданной конструкции колонны бинарной ректификации, определяющей коэффициенты тепло- и массопереноса, заданных составов потоков на входе и выходе и производительности колонны расход пара, флегмовое число и затраты тепла, подаваемого в куб, фиксированы и могут быть найдены по приведенным выше соотношениям. Если же заданы составы лишь входного потока, одного из потоков на выходе и производительность по целевому потоку, то может быть выбрана доля отбора (концентрация второго потока на выходе), минимизирующая затраты энергии на разделение.  

КАНАЛ (обслуживания) (hannel, server) - одно из фундаментальных понятий массового обслуживания теории , обозначающее функциональный элемент, непосредственно выполняющий заявку, поступившую в массового обслуживания систему Это понятие в зависимости от специфики системы может иметь самые разл интерпретации, напр, к-л прибор, линия связи , принимающая поступающие требования, кран-штабелер, комплектующий заказы на складе, и т п Случайный характер входного потока заявок обусловливает неравномерность загрузки К в какой-то момент времени они могут быть пере-  

Входной поток информации

Входной поток информации - последовательность документов и данных, поступающих для ввода в информационную систему.

См. также: Информационное наполнение

  • - устройство на входе системы, преобразующее входные сигналы для согласования работы системы с источником внеш. воздействия...

    Большой энциклопедический политехнический словарь

  • - путевой сигнал, ограждающий пути раздельного пункта. В качестве В. с. могут применяться светофоры или семафоры. Входной семафор устанавливается не ближе 50 м, светофор-не ближе 15 м от остряка входной стрелки...

    Технический железнодорожный словарь

  • - "...Контроль продукции поставщика, поступившей к потребителю или заказчику и предназначаемой для использования при изготовлении, ремонте или эксплуатации продукции..." Источник: Приказ Роскартографии от 29.06...

    Официальная терминология

  • - контроль соответствия паспортным данным промышленной продукции, поступающей на строительство...

    Строительный словарь

  • - материальный поток, поступающий в логистическую систему извне...

    Словарь бизнес терминов

  • - документ, составленный по определенной форме и содержащий данные, предназначенные для ввода в информационную систему.См. также: Информационное наполнение  ...

    Финансовый словарь

  • - совокупность сообщений, циркулирующих в системе, необходимых для осуществления процессов управления...

    Большой экономический словарь

  • - внешний материальный поток, поступающий в данную логистическую систему из внешней среды...

    Большой экономический словарь

  • - устройство на входе системы или прибора, преобразующее входные воздействия в сигналы, удобные для дальнейшей обработки, передачи и регистрации или для согласования работы систем с различными входными -...

    Большая Советская энциклопедия

  • - ...

    Словарь антонимов

  • - ВХОДНО́Й см. войти и...

    Толковый словарь Ожегова

  • - ВХОДНО́Й, входная, входное. прил. к вход. Входная дверь. Входной билет. Входное отверстие...

    Толковый словарь Ушакова

  • - входно́й I прил. Начальный, отправной, исходный. II прил. 1. Дающий право на вход 1. куда-либо. 2. Служащий входом...

    Толковый словарь Ефремовой

  • - входно́й прил., употр. сравн. часто 1. Говоря о двери, вы подразумеваете наружную дверь, ведущую в ваш дом с улицы. Кто-то вышел в переднюю и отворил входную дверь. 2...

    Толковый словарь Дмитриева

  • - входн"...

    Русский орфографический словарь

  • - ...

    Формы слова

"Входной поток информации" в книгах

Поток информации в природе

автора

Поток информации в природе

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Поток информации в природе Порядок переписывания генетической информации в клетке ДНК? РНК? белок определяет поток информации в живой природе. Этот поток информации реализуется в подавляющем большинстве живых систем. Он получил определение центральная догма

«Входной» НДС

Из книги Как правильно применять «упрощенку» автора Курбангалеева Оксана Алексеевна

«Входной» НДС При покупке основного средства организация-покупатель оплачивает его стоимость с учетом налога на добавленную стоимость. Однако возместить из бюджета сумму «входного» НДС предприятие, применяющее упрощенную систему налогообложения, не может. Эта сумма

Остановить поток вредной информации

Из книги Почему принцессы кусаются. Как понимать и воспитывать девочек автора Биддалф Стив

Остановить поток вредной информации Хотя нам и не нравится в этом признаваться, но мы, люди, по сути своей стадные животные. Мы постоянно ищем признания со стороны других и постоянно подражаем окружающим, стараясь соответствовать какой-то общепринятой норме; в наше время

Идущий из Африки поток информации о различных формах ископаемого человека заставляет по-новому взглянуть на процесс выделения древнейших предков человека из животного мира и на основные этапы становления человечества.

Из книги Древние цивилизации автора Бонгард-Левин Григорий Максимович

Идущий из Африки поток информации о различных формах ископаемого человека заставляет по-новому взглянуть на процесс выделения древнейших предков человека из животного мира и на основные этапы становления человечества. Прояснению многих проблем способствует и

Входной преобразователь

Из книги Большая Советская Энциклопедия (ВХ) автора БСЭ

Поток информации для getint()

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Поток информации для getint() Какой выход должна иметь наша функция? Во-первых, несомненно, что она должна была бы выдавать значение прочитанного числа. Конечно, функция scanf() уже делает так. Во-вторых, и это очень существенно, мы собираемся создать такую функцию, которая

Сознание – это поток энергии и информации

Из книги Майндсайт. Новая наука личной трансформации автора Сигел Дэниел

Сознание – это поток энергии и информации Энергия – это способность выполнять действие, например двигать конечностями или формировать мысли. Физика исследует ее различные виды. Мы чувствуем излучаемую энергию, сидя на солнце, кинетическую – гуляя по пляжу или плавая,

Поток информации

Из книги Сборник рассказов и повестей автора Лукин Евгений

Поток информации Сразу же, как только Валерий Михайлович Ахломов показался на пороге редакционного сектора, стало ясно, что на планерке ему крепко влетело от главного.- Пользуетесь добротой моего характера! - в тихом бешенстве выговорил он. - Уму непостижимо: в

Глава 2 ДИПЛОМАТИЯ КУЛЬТУРНОГО ИМПЕРИАЛИЗМА И СВОБОДНЫЙ ПОТОК ИНФОРМАЦИИ

Из книги автора

Глава 2 ДИПЛОМАТИЯ КУЛЬТУРНОГО ИМПЕРИАЛИЗМА И СВОБОДНЫЙ ПОТОК ИНФОРМАЦИИ В течение четверти века одна доктрина - идея о том, что никакие барьеры не должны препятствовать потоку информации между странами, преобладала в международном мышлении о коммуникациях и

Поток информации и ваша личная философия

Из книги Думай и делай! автора Барановский Сергей Валерьевич

Поток информации и ваша личная философия Наш век хорош хотя бы тем, что в нем очень много информации. Один интернет открывает нам сотни новых дверей. Не слушайте тех, кто называет Сеть помойкой! Интернет – не свалка, а плохо убранная библиотека. Десятки тысяч разноплановых

автора Госстандарт России

Из книги ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВСТРОЕННЫХ СИСТЕМ. Общие требования к разработке и документированию автора Госстандарт России

5.1 Поток информации между процессами жизненного цикла системы и ПО

Из книги ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВСТРОЕННЫХ СИСТЕМ. Общие требования к разработке и документированию автора Госстандарт России

5.1 Поток информации между процессами жизненного цикла системы и ПО 5.1.1 Информационный поток от системных процессов к процессам ПО В процессе оценки безопасности системы должны быть определены возможные отказные ситуации для системы и установлены их категории,

12.37 Руководство по входной/выходной информации ПО

Из книги ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВСТРОЕННЫХ СИСТЕМ. Общие требования к разработке и документированию автора Госстандарт России

12.37 Руководство по входной/выходной информации ПО Руководство по входной/выходной информации ПО объясняет пользователю как представить, ввести входную информацию и как интерпретировать выходную информацию, в каком режиме (пакетном или интерактивном) работает система

Основная задача ТСМО заключается в установлении зависимости между характером потока заявок на входе СМО, производительностью одного канала, числом каналов и эффективностью обслуживания.

В качестве критерия эффективности могут быть использованы различные функции и величины:

    • среднее время простоя системы;
    • среднее время ожидания в очереди;
    • закон распределения длительности ожидания требования в очереди;
    • средний % заявок, получивших отказ; и т.д.

Выбор критерия зависит от вида системы. Например, для систем с отказами главной характеристикой является абсолютная пропускная способность СМО; менее важные критерии - число занятых каналов, среднее относительное время простоя одного канала и системы в целом. Для систем без потерь (с неограниченным ожиданием) важнейшим является среднее время простоя в очереди, среднее число требований в очереди, среднее время пребывания требований в системе, коэффициент простоя и коэффициент загрузки обслуживающей системы.

Современная ТСМО является совокупностью аналитических методов исследования перечисленных разновидностей СМО. В дальнейшем из всех достаточно сложных и интересных методов решения задач массового обслуживания будут изложены методы, описываемые в классе марковских процессов типа “гибель и размножение”. Это объясняется тем, что именно эти методы чаще всего используются в практике инженерных расчетов.

2. Математические модели потоков событий.

2.1. Регулярный и случайный потоки.

Одним из центральных вопросов организации СМО является выяснение закономерностей, которым подчиняются моменты поступления в систему требований на обслуживание. Рассмотрим наиболее употребляемые математические модели входных потоков.

Определение: Поток требований называют однородным, если он удовлетворяет условиям:

  1. все заявки потока с точки зрения обслуживания являются равноправными;

вместо требований (событий) потока, которые по своей природе могут быть различными, рассматриваются толь ко моменты их поступления.

Определение: Регулярным называются поток, если события в потоке следуют один за другим через строгие интервалы времени.

Функция f (х) плотности распределения вероятности случайной величины Т – интервала времени между событиями имеет при этом вид:

Где - дельта функция, М т - математическое ожидание, причем М т =Т, дисперсия D т =0 и интенсивность наступления событий в поток =1/M т =1/T.

Определение: Поток называют случайным , если его события происходят в случайные моменты времени.

Случайный поток может быть описан как случайный вектор, который, как известно, может быть задан однозначно законом распределения двумя способами:

Где, zi - значения Ti(i=1,n), В этом случае моменты наступления событий могут быть вычислены следующим образом

t 1 =t 0 +z1

t 2 =t 1 +z2

………,

где, t 0 - момент начала потока.

2.2. Простейший пуассоновский поток.

Для решения большого числа прикладных задач бывает достаточным применить математические модели однородных потоков, удовлетворяющих требованиям стационарности, без последействия и ординарности.

Определение: Поток называется стационарным, если вероятность появления n событий на интервале времени (t,t+T) зависит от его расположения на временной оси t.

Определение: Поток событий называется ординарным, если вероятность появления двух или более событий в течении элементарного интервала времени D t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале, т.е. при n=2,3,…

Определение: Поток событий называетсяпотоком без последствия , если для любых непересекающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий попадающих на другой.

Определение: Если поток удовлетворяет требованиям стационарности, ординарности и без последствия он называется простейшим, пуассоновским потоком.

Доказано, что для простейшего потока число n событий попадающих на любой интервал z распределено по закону Пуассона:

(1)

Вероятность того, что на интервале времени z не появится ни одного события равна:

(2)

тогда вероятность противоположного события:

где по определению P(T это функция распределения вероятности Т. Отсюда получим, что случайная величина Т распределена по показательному закону:

(3)

параметр называют плотностью потока. Причем,

Впервые описание модели простейшего потока появились в работах выдающихся физиков начала века – А. Эйнштейна и Ю.Смолуховского, посвященных броуновскому движению.

2.3. Свойства простейшего пуассоновского потока.

Известны два свойства простейшего потока, которые могут быть использованы при решении практических задач.

2.3.1. Введем величину a= х. В соответствии со свойствами Пуассоновского распределения при оно стремится к нормальному. Поэтому для больших а для вычисления Р{Х(а)меньше, либо равно n}, где Х(а) – случайная величина распределенная по Пуассону с матожиданием а можно воспользоваться следующим приближенным равенством:

2.3.2. Еще одно свойство простейшего потока связано со следующей теоремой:

Теорема: При показательном распределении интервала времени между требованиями Т, независимо от того, сколько он длился, оставшаяся его часть имеет тот же закон распределения.

Доказательство: пусть Т распределено по показательному закону: Предположим, что промежуток а уже длился некоторое время а< Т. Найдем условный закон распределения оставшейся части промежутка Т 1 =Т-а

F a (x)=P(T-ax)

По теореме умножения вероятностей:

P((T>a)(T-az) P(T-aa)=P(T>a) F a (z).

Отсюда,

равносильно событию а, для которого P(а; с другой стороны

P(T>a)=1-F(a), таким образом

F a (x)=(F(z+a)-F(a))/(1-F(a))

Отсюда, учитывая (3):

Этим свойством обладает только один вид потоков – простейшие пуассоновские.

По характеру входной поток требований разделяется на детерминированный поток требований и стохастический (рис.2).

Детерминированный входной поток может быть двух видов. В первом случае требования поступают через равные промежутки времени. Другим видом детерминированного потока является поток, в котором требования поступают по известной программе - расписанию, когда моменты поступления новых требований известны заранее.

Рис.2. Классификация входного потока

Если промежутки времени между поступлениями требований случайны, то это будет стохастический процесс.

Стохастический поток требований подразделяется на три вида: поток с произвольными стохастическими свойствами, рекуррентный поток и совершенно случайный или пуассоновский поток требований.

Произвольный поток требований характеризуется тем, что на него не накладывается никаких ограничений на стохастическую независимость интервалов между поступлениями требований, а также на характер вероятностных законов, описывающих интервалы между требованиями.

Входной поток называется рекуррентным, если он характеризуется следующими свойствами:

  • продолжительность интервалов между поступлениями требований стохастически независимы;
  • продолжительность интервалов описывается одной и той же плотностью распределения.

Входной поток называется совершенно случайным или простейшим, если для него характерно:

  • продолжительность интервалов между поступлениями требований статистически независимы;
  • продолжительность интервалов описывается одной и той же плотностью распределения;
  • вероятность поступления требований на достаточно малом интервале Δt зависит только лишь от величины Δt (это свойство называется стационарностью или однородностью прихода);
  • вероятность поступления требований на интервале Δt не зависит от предыстории процесса;
  • характер потока требований таков, что в любой момент времени может поступить только одно требование.

Таким образом, простейший поток требований или совершенно случайный поток - это поток, определяющейся свойствами стационарности, ординарности и отсутствием последствия одновременно.



Предположения о совершенно случайном входном потоке требований эквивалентно тому, что плотность распределения интервалов времени между последовательными поступлениями требований описывается экспоненциальным законом:

(1.1)

где λ - интенсивность поступления заявок в систему.

Если интервалы распределены по экспоненциальному закону, то процесс пуассоновский. Такие процессы называются М-процессами (Марковскими).

Кроме закона Пуассона часто применяется закон распределения Эрланга.

(1.2)

СМО с отказами

Одноканальная СМО содержит один канал (n = 1), и на ее вход поступает пуассоновский поток заявок П вх интенсивность (среднее число событий в единицу времени) которого inП вх =λ. Так как интенсивность входящего потока может изменяться во времени, то вместо λ записывают λ (t). Тогда время обслуживания каналом одной заявки Т об распределено по показательному закону и записывается в виде: , где λ - интенсивность отказов.

Состояние СМО характеризуется простаиванием или занятостью ее канала, т.е. двумя состояниями: S 0 - канал свободен и простаивает, S 1 - канал занят. Переход системы из состояния S 0 в состояние S 1 осуществляется под воздействием входящего потока заявок П вх, а из состояния S 1 в состояние S 0 систему переводит поток обслуживании П об: если в данный момент времени система находится в некотором состоянии, то с наступлением первого после данного момента времени СМО переходит в другое состояние. Плотности вероятностей перехода из состояния S 0 в S 1 и обратно равны соответственно λ и µ. Граф состояний подобной СМО с двумя возможными состояниями приведен на рис.3.

Рис.3. Граф состояний одноканальной СМО с отказами.

Для многоканальной СМО с отказами (n > 1) при тех же условиях состояния системы обозначим по числу занятых каналов (по числу заявок, находящихся в системе под обслуживанием, так как каждый канал в СМО либо свободен, либо обслуживает только одну заявку).

Таким образом, подобная СМО может находиться в одном из следующих (n+1) состояний: s 0 - все n каналов свободны; s 1 - занят только один из каналов, остальные (n-1) каналов свободны; s i - заняты i - каналов, (n-i) каналов свободны; s n - заняты все n каналов. Граф состояний такой СМО приведен на рис.4.

Рис.4. Граф состояний многоканальной СМО с отказами.

При этом имеет место а

Пользуясь общим правилом составления дифференциальных уравнений Колмогорова, можно для приведенных на рис.2 и рис.3 графов состояний составить системы дифференциальных уравнений:

например, для одноканальной СМО (рис.2) имеем:

для многоканальной СМО (рис.3) соответственно имеем:

Решив первую систему уравнений, можно найти значения p 0 (t) и p 1 (t) для одноканальной СМО и построить графики при трех случаях:

СМО с ожиданием

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью λ. Интенсивность потока обслуживания равна µ (т.е. в среднем непрерывно занятый канал будет выдавать µ обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т.е. клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость. Граф состояний СМО в этом случае имеет вид, показанный на рис.6.

Рис.6. Граф состояний одноканальной СМО с ожиданием

Состояния СМО имеют следующую интерпретацию:

S 0 - канал свободен;

S 1 - канал занят (очереди нет);

S 2 - канал занят (одна заявка стоит в очереди);

S n - канал занят (n-1 заявок стоит в очереди);

S N - канал занят (N-1 заявок стоит в очереди).

Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

(1.11)

где ρ=λ/µ; n - номер состояния.

Решение приведенной выше системы уравнений (1.10) для нашей модели СМО имеет вид:

(1.12)

(1.13)

Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превышать N-1), а не соотношением между интенсивностями входного потока, т.е. не отношением λ/µ=ρ. Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1): вероятность отказа в обслуживании заявки:

(1.14)

относительная пропускная способность системы:

(1.15)

абсолютная пропускная способность:

среднее число находящихся в системе заявок:

(1.17)

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

(1.19)

среднее число заявок (клиентов) в очереди (длина очереди):

. (1.20) .

Теперь рассмотрим более подробно СМО, имеющую n-каналов с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность λ, а поток обслуживаний - интенсивность µ. Необходимо найти предельные вероятности состояний СМО и показатели ей эффективности.

Система может находиться в одном состоянии S 0 , S 1 , S 2 ,…,S k ,…,S n ,…, нумеруемых по числу заявок, находящихся в СМО: S0 - в системе нет заявок (все каналы свободны); S 1 - занят один канал, остальные свободны; S 2 - заняты два канала, остальные свободны; …, S k - занято k каналов, остальные свободны; …, S n - заняты все n каналов (очереди нет); S n +1 - заняты все n каналов, в очереди одна заявка; …, S n + r - заняты все n каналов, r заявок стоит в очереди, ….

среднее число заявок в очереди:

(1.32)

среднее число заявок в системе:

(1.31) .

24. Входящий поток требований

24.1 Структура СМО

Изучение СМО начинается с анализа входящего потока требований. Входящий поток требований представляет собой совокупность тре­бований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономер­ностей этого потока и дальнейшего улучшения качества обслуживания.

В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также ин­тервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.

Среднее число требований, поступающих в систему обслуживания за единицу времени, называетсяинтенсивностью поступления требований и определяется следующим соотношением:

где Т - среднее значение интервала между поступлением очередных требований.

Для многих реальных процессов поток требований достаточно хоро­шо описывается законом распределения Пуассона. Такой поток называет­сяпростейшим .

Простейший поток обладает такими важными свойствами:

    Свойством стационарности , которое выражает неизменность вероятностного режима потока по времени. Это значит, что число требований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погрузку в среднем в сутки должно быть одинаковым для различных перио­дов времени, к примеру, в начале и в конце декады.

    Отсутствия последействия, которое обуславливает взаимную не­зависимость поступления того или иного числа требований на обслужи­вание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от чис­ла требований, обслуженных в предыдущем промежутке времени. Напри­мер, число автомобилей, прибывших за материалами в десятый день ме­сяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.

    Свойством ординарности, которое выражает практическую невозмож­ность одновременного поступления двух или более требований (вероят­ность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).

Поскольку цель функционирования любой обслуживающей системы заключается в удовлетворении заявок (требований) на обслуживание, поток заявок (требований) является одним из основных и наиболее важных понятий теории массового обслуживания. Нужно научиться количественно описывать входящий поток требований, но для этого следует выяснить его характер и структуру.

Практически любой поток требований, поступающий в систему обслуживания, является случайным процессом. Действительно, если мы примем t =0 за начальный момент, то во многих потоках (кроме того случая, когда требования поступают строго по расписанию) либо нельзя, либо довольно трудно точно предсказать момент поступления очередного требования, а также моменты поступления последующих требований. Например, нельзя точно указать моменты прихода клиентов в ателье, пациентов в больницу, поступления вызовов на АТС, оборудования в ремонтную мастерскую и т. д.

Следовательно, моменты поступления заявок, равно и интервалы между ними, есть, вообще говоря, независимые случайные величины. Тогда процесс поступления требований в систему массового обслуживания следуя рассматривать как вероятностный или случайный процесс. Обозначим такой процесс через Х(t ). Эта функция определяет число требований, поступивших в систему за промежуток времени . Для каждого фиксированного t функция Х(t ) есть случайная величина. Действительно, если выбрать промежутки времени даже одинаковой продолжительности, то в этом случае нельзя быть уверенным в том, что в каждый из этих промежутков поступит одно и то же число требований.

За промежуток времени может не поступить ни одной заявки, а может поступить 1, 2,... заявок. Но какой бы продолжительности промежутки времени мы не выбирали, число заявок будет только целым.

Поток требований можно представить в виде графика одной из реализаций случайной величины функции Х(t ), принимают лишь целые неотрицательные значения. При этом график (рис. 24.2) представляет ступенчатую линию со скачками, равными либо единице, либо нескольким единицам в зависимости от того, поступают ли требования по одному или группами. Таким образом, случайный процесс Х(t ), обладает следующими особенностями.

1. При всяком фиксированном t функция Х(t ), принимает целые неотрицательные значения 0, 1, 2,...,R,... и с возрастанием не убывает.

2. Число требований, поступивших за промежуток вре­мени , зависит от длины этого промежутка, т. е. от значе­ния t.

3. Реализации процесса представляют собой ступенчатые линии, чем-то непохожие одна на другую. Из теории случайных процессов известно, что процесс будет полностью определен с вероятностной точки зрения, если будут известны все его много­мерные законы распределения:

Однако отыскание такой функции в общем случае является весьма трудной, а иногда неразрешимой задачей. Поэтому на прак­тике стараются использовать процессы, которые обладают свой­ствами, позволяющими найти более простые способы их описания. К таким свойствам относятся:

Стационарность (лучше однородность во времени);

Отсутствие последействия (марковость), иногда говорят об отсутствии памяти;

Ординарность.

Перечисленные свойства были рассмотрены выше при изучении стационарных и марковских процессов, поэтому здесь лишь напом­ним суть этих свойств в терминах теории массового обслуживания.

Поток требований называется стационарным или однородным во времени, если вероятность поступления определенного количе­ства требований в течение определенного промежутка времени за­висит только от длины промежутка, а не от его временного положения (иначе говоря, не зависит от начала отсчета). Таким обра­зом, для стационарного потока вероятность того, что за промежу­ток поступит ровно R требований, равна вероятности поступле­ния R требований за промежуток [а, а + t ] , где а>0 , т. е.

Это означает, что вероятностные характеристики потока (парамет­ры закона распределения) не должны изменяться во времени.

Свойством стационарности обладают многие реальные потоки требований, если рассматривать их в течение непродолжительных периодов. К таким потокам можно отнести: поток вызовов на АТС в определенные промежутки времени, поток покупателей в магазин, поток радиоаппаратуры, нуждающейся в ремонте, интенсивность движения пассажиров и т. п. Однако некоторые из перечисленных потоков изменяются в течение дня (вероятность вызовов в ночное время меньше чем днем, часы «пик» в работе городского транс­порта).

В некоторых потоках число требований, поступивших в систему после произвольного момента времени, не зависит от числа ранее поступивших требований и моментов их поступления, т. е. интер­валы между поступлениями требований считаются независимыми величинами и между ними нет связи. Будущее состояние системы не зависит от прошлого ее состояния. Поток, обладающий таким свойством, называют потоком без последействия или марковским. Свойство отсутствия последействия (отсутствия памяти) присуще многим реальным потокам. Например, поток вызовов на АТС является потоком без последействия, поскольку, как правило, оче­редной вызов поступает независимо от того, когда и сколько было вызовов до этого момента.

В целом ряде случаев характер потока требований таков, что одновременное появление двух или большего числа требований невозможно или почти невозможно. Поток, обладающий таким свойством, называется ординарным.

Если Р R >2 (h ) -вероятность появления за промежуток h более одного требования, то для ординарного потока должно быть:

,

т. е. ординарность потока требует, чтобы вероятность появлений более одного требования за малый промежуток времени h была бы бесконечно малой величиной более высокого порядка чем h . В одних реальных потоках это свойство является очевидным, а в других мы принимаем его с достаточно хорошим приближением к действительности. Классическими примерами такого потока являются поток вызовов на АТС и поток клиентов в ателье.

Поток требований, обладающий тремя перечисленными свойствами, называется простейшим. Можно показать, что всякий простейший поток описывается процессом Пуассона. С этой целью напомним определение процесса Пуассона, принятое в теории случайных функций.

Случайный процесс X (t ) (0≤ t <∞) целочисленными значениями называется процессом Пуассона, если он является процессом с независимыми приращениями или если любое приращение процесса за промежуток времени h распределено по закону Пуассона с параметром λ h , где λ>0 т.е.

В частности, если t =0, X(0)=0 , то (3) переписывается сле­дующим образом:

(4)

Здесь V r (h) означает вероятность того, что интересующее нас событие произойдет ровно R раз за промежуток времени h (с точки зрения теории массового обслуживания V r (h) опреде­ляет вероятность того, что за промежуток времени h в систему обслуживания поступит ровно R требований).

Смысл параметра X легко выяснить, если найти математиче­ское ожидание пуассоновского процесса: М [Х(t )]=М. При t = 1 получаем М[Х(1)]=1. Следовательно, есть среднее число заявок за единицу времени. Поэтому величину λ часто называют интенсивностью или плотностью потока.

Из определения процесса Пуассона немедленно вытекают три свойства, идентичные указанным выше:

1) Независимость приращений. В независимости приращений для процесса Пуассона заключается отсутствие последействия- марковость процесса.

2) Однородность во времени. Это означает, что вероятности V r (h) не зависят от начального момента t рассматриваемого промежутка , а зависят только от длины промежутка h :

3)Ординарность. Ординарность процесса Пуассона означает практическую невозможность поступления группы требований в один и тот же момент.

Итак, одновременное поступление двух и более требований за малый промежуток времени h маловероятно, поэтому

что указывает на ординарность процесса Пуассона.

Таким образом, мы установили, что поток, описываемый процессом Пуассона, является простейшим. Однако справедливо и обратное предположение, что простейший поток описывается процессом Пуассона. Вследствие этого простейший поток часто называют так же пуассоновским потоком. Пуассоновский процесс в теории массового обслуживания занимает особое место, аналогичное тому, какое в теории вероятностей среди других законов распределения занимает нормальный закон. И дело не в том, что он описывается математически наиболее просто, а в том, что он наиболее распространен. Пуассоновский поток является предельным (асимптотическим потоком при объединении большого числа других потоков).